Abstract
We have shown that zinc ion (Zn2+) in secretory granules of pancreatic beta cells could act as a paracrine death effector in streptozotocin-induced diabetes. As Zn2+ has been reported to perturb glycolysis, we studied if pyruvate could inhibit Zn(2+)-mediated islet cell death in vitro and streptozotocin-induced diabetes in vivo by normalizing intracellular energy metabolism. Cell death was measured by quantitative viable cell staining and Hoechst/propidium iodide staining. ATP was measured by bioluminescence determination. Pyruvate was infused through the tail vein 1 h before streptozotocin administration. Beta-cell volume was measured by point counting of the insulin-containing cells. Zn2+ induced classical necrosis on MIN6N8 insulinoma cells which was associated with a rapid decline of intracellular ATP levels. Pyruvate inhibited Zn(2+)-induced necrosis of insulinoma cells and depletion of intracellular ATP by Zn2+. Pyruvate did not inhibit other types of necrosis or apoptosis. Energy substrates such as oxaloacetate, alpha-ketoglutarate and succinic acid dimethylester also attenuated Zn(2+)-induced insulinoma cell death. Methylpyruvate that does not generate NAD+ in the cytoplasm or alpha-ketoisocaproate that stimulates ATP generation exclusively in mitochondria also protected insulinoma cells from Zn(2+)-induced necrosis. Pyruvate infusion inhibited the development of diabetes by protecting beta-cell mass after streptozotocin administration. These results indicate that pyruvate inhibits Zn(2+)-induced necrosis of beta cells in vitro by protecting intracellular ATP levels and also streptozotocin-induced diabetes in vivo where Zn2+ has been reported to act as a paracrine death effector.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have