Abstract

Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α). No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ), a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w.) was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR) and led to an increase in the extracellular acidification rate (ECAR), a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC) complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic fibers. This pre-clinical in vivo study suggests that PQQ may provide a potent therapeutic benefit for the treatment of denervation-induced atrophy by activating PGC-1α and maintaining the mitochondrial ETC complex in skeletal muscles.

Highlights

  • Skeletal muscle has critical physiological functions including energy expenditure, metabolism, and physical strength

  • To evaluate the effects of axotomy on skeletal muscle wasting, C57BL6/J mice were unilaterally denervated by severing the sciatic nerve of the right hindlimb, with the left limb serving as the internal control

  • In contrast to the control group, the 21st day post-denervation resulted in muscle atrophy and a shift towards oxidative fibers, as evidenced by the reduced fiber crosssectional areas of H&E staining and the higher intensity of NADH-tetrazolium reductase (NADH-TR) and c oxidase (COX) staining (Fig 1E, 1H and 1K)

Read more

Summary

Introduction

Skeletal muscle has critical physiological functions including energy expenditure, metabolism, and physical strength. Skeletal muscles are divided into two isoforms based on their metabolism: type I fibers are more reddish, with a slower contractile speed and greater fatigue resistance, and with greater mitochondrial content, favoring oxidative respiration. Decreased muscle mass or atrophy represent the acceleration of protein degradation induced by various physiological challenges such as chronic and acute diseases (diabetes and trauma), disuse conditions (denervation and microgravity), and progressive aging or sarcopenia [3]. Denervation of peripheral motor nerves results in dysfunction of skeletal muscle contractility [4]. These changes include a rapid loss of muscle mass and mitochondrial function during the first week after denervation [5]. Skeletal muscle atrophy is followed by an increase in fibrous and adipose connective tissue and subsequently the loss of muscle function [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call