Abstract

The demonstration of the ornithine biosynthesis from glutamate in cell-free homogenates of rat intestinal mucosa by Ross, G., Dunn, D., and Jones, M.E. (1978) Biochem. Biophys. Res. Commun. 85, 140-147 suggested that this tissue might have the capacity to convert glutamate to pyrroline-5-carboxylate (P5C). We have shown in the preceding paper (Wakabayashi, Y., and Jones, M.E. (1983) J. Biol. Chem. 258, 3865-3872) that this is the case. The intracellular distribution of the P5C-synthesizing activity was investigated utilizing a newly developed procedure for subcellular fractionation of the rat intestinal mucosa. We found that the activity resided in the mitochondrial fraction as characterized by marker enzymes and an electron micrograph. The mitochondrial membrane fraction, freed of the soluble matrix and intermembrane space enzymes, retained all of the P5C-synthesizing activity. Addition of the soluble fraction to the membrane fraction did not affect the activity. P5C synthase, the name we have chosen for the protein(s) that catalyzes P5C synthesis from glutamate when ATP and NADPH are present, is susceptible to thermal inactivation in the presence of detergent. By lowering the incubation temperature to or below 20 degrees C, one can obtain a linear production of P5C with respect to time and protein concentration. Lower incubation temperatures are recommended for routine assay of this enzyme(s). Addition of 30% glycerol to the incubation mixture resulted in a linear formation of P5C with time at 30 degrees C; this and other data suggest that polyhydroxylic compounds may protect this protein against denaturation. Preliminary experiments suggest that P5C synthase can be extracted from a mitochondrial membrane in the presence of detergent, a high salt concentration, and glycerol. The possibility that the enzyme(s) is located in the inner mitochondrial membrane is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.