Abstract
Microbial reduction under anaerobic condition is a promising method for remediating vanadate [V(V)] contamination in aquifers, while V(V) may be re-generated with redox fluctuations. The inability to remove vanadium after remediation has become a key issue limiting bioremediation. In this study, we proposed the use of pyrrhotite, a natural mineral with magnetic properties, to immobilize V(V) to insoluble V(IV) under microbial action and remove vanadium from the aquifer using a magnetic field, which could avoid the problem of V(V) recontamination under redox fluctuating conditions. Up to 49.0 ± 4.7 % of vanadium could be removed from the aquifer by the applied magnetic field, and the vanadium in the aquifer after the reaction was mainly in the acid-extractable and reducible states. pH had a strong effect on the magnetic recovery of V(V), while the influence of initial V(V) concentration was weak. Microbial community structure analysis showed that Thiobacillus, Proteiniphilum, Fermentimonas, and Desulfurivibrio played key roles for V(V) reduction and pyrrhotite oxidation. Structural equation model indicated the positive correlation between these genera with the magnetic recovery of vanadium. Real time-qPCR confirmed the roles of functional genes of V(V) reduction (napA and nirK) and SO42− reduction (dsrA) in such biological processes. This study provides a novel route to sustainable V(V) remediation in aquifers, with synchronous recovery of vanadium resources without rebound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.