Abstract

Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call