Abstract
This paper is focused on the numerical analysis of a screw pyrolyzer with special attention on kinetics, heat and mass transfer phenomena by means of a computational 1D tool. A steady-state model has been developed to generate temperature profiles and conversion patterns over the reactor axis. Residence time distribution capabilities have been considered to take into account the axial dispersion. The framework, including heat transport processes, is based on a 4 parallel Distributed Activation Energy Model. Its structure includes the three major biomass pseudo-component occurring in the biomass thermal degradation. The results of a generic biomass are then analyzed in terms of products distribution and heat transfer characteristics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have