Abstract

Emissions of greenhouse gases and growing amounts of waste plastic are serious environmental threats that need urgent attention. The current methods dedicated to waste plastic recycling are still insufficient and it is necessary to search for new technologies for waste plastic management. The pyrolysis-catalytic dry reforming (PCDR) of waste plastic is a promising pro-environmental way employed for the reduction of both CO2 and waste plastic remains. PCDR allows for resource recovery, converting carbon dioxide and waste plastics into synthetic gas. The development and optimization of this technology for the high yield of high-quality synthesis gas generation requires the full understanding of the complex influence of the process parameters on efficiency and selectivity. In this regard, this review summarizes the recent findings in the field. The effect of process parameters as well as the type of catalyst and feedstock are reviewed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call