Abstract

Integrated pyroelectric arrays are receiving serious attention for the next generation of room temperature uncooled IR cameras. Such pyroelectric arrays are based on monolithic ferroelectric(FE) thin films. FE films with large values of reported pyroelectric coefficients include PbTiO3, Ca-doped PbTiO3, La-doped PbTiO3, PZT 53/47 and Pb(Sc0.5Ta0.5)O3. The present paper reports a systematic study of the compositional dependence of PZT thin films on their pyroelectric properties. A series of sol-gel derived PZT (lead zirconate titanate) thin films with various Zr/Ti ratios, namely, PbTiO3, PZT 20/80, PZT 35/65, PZT 53/47, PZT 65/35, PZT 92/8 and PbZrO3, were prepared on platinized Si substrates. The films were fired to 650 – 700°C to crystallize them into single-phase perovskite. The degree of preferred orientation, grain size and firing temperature affect the pyroelectric responses. Pyroelectric coefficients as large as 2.5 × 10−8 C/cm2-K were obtained, making such PZT thin films attractive in pyroelectric arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call