Abstract

This paper studies the pyroelectric coefficient of 0-3 composites consisting of 27%vol lead titanate (PT) powder embedded in a vinylidene fluoride-trifluoroethylene copolymer (PVDF-TRFE) matrix. The constituent phases of the composites have been polarized in four possible ways: only the copolymer polarized; only the ceramic polarized; the copolymer and ceramic phases polarized in the same direction; the two phases polarized in opposite directions. The pyroelectric coefficient was measured by a dynamic method at 5 mHz within the temperature range 20 to 90/spl deg/C (which covers the ferroelectric to paraelectric phase transition temperature of the copolymer matrix). The composite with the copolymer and ceramic phases polarized in the same direction exhibits strong pyroelectric but relatively weak piezoelectric activity, and vice versa when the constituent phases are oppositely polarized. A theoretical model is used to analyze the pyroelectric coefficient of the composites in terms of the pyroelectric and dielectric properties of the copolymer matrix as determined from experiment, and those of the ceramic particles which are assumed to be temperature independent. The pyroelectric coefficient and dielectric permittivity of the ceramic particles are obtained as fitting parameters. The theoretical prediction is found to agree well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.