Abstract

Ultraviolet (UV) photodetectors have received a significant amount of attention in a variety of areas; especially, self-powered photodetectors are anticipated to address the energy-saving demand in the astronautics under the photovoltaic effect. In this work, a ZnO:Ga/Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.1</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.9</sub> N heterojunction is introduced for performing UV photodetector, which is enhanced by the pyro-photoelectric effect coupling of pyroelectric and photovoltaic effects. The heterojunction UV photodetector can operate in a self-powered mode with responsivity of 0.063 mA W <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> under the illumination of 135 μW cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> . More importantly, after pyro-photoelectric enhancement, the photocurrent is effectively increased from 13 pA to 45 pA. Additionally, under the illumination of 493 μW cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> , the photo-to-dark-current ratio ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PDCR</i> ) of 80 and 1.7 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> are obtained at reverse bias of -10 V and forward bias of +10 V, respectively, indicating that the heterojunction UV photodetector can be regarded as a dual-mode photodetector since it can operate in both forward-biased photoconductive mode and reverse-biased depletion mode. Moreover, the UV photodetector exhibits a fast temporal pulsed laser response with a rising time of 0.79 ms and decay time of 9.4 ms. In all, this work presents a novel strategy for the advancement of UV detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call