Abstract
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.
Highlights
DNA replication is a fundamental cellular process that ensures duplication of the genetic information and subsequent transfer to daughter cells
Errors occurring during DNA replication may affect both the accuracy of chromosome duplication and the balance of chromosome segregation during mitosis
In the work presented here, we identified a novel mechanism by which dNTP pool disequilibrium compromises the completion of DNA replication and chromosome segregation, independently of the rate of fork progression
Summary
DNA replication is a fundamental cellular process that ensures duplication of the genetic information and subsequent transfer to daughter cells. Replication stress is defined as any phenomenon that alters the fulfillment of the DNA replication program. Some loci in the human genome are difficult to replicate They include common fragile sites (CFSs) that have a high A-T content and origin-poor regions, and such loci are prone to the formation of secondary structures and late replication [5, 4]. Such "difficult to replicate" regions are very sensitive to replication stress. Such stress can jeopardize the completion of their replication, with the possibility of the formation of intertwined sister chromatid bridges during mitosis [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.