Abstract
P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinucleoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N(4)-alkyloxycytidine derivatives. OH groups on a terminal δ-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N(4)-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N(4)-(phenylethoxy)-CTP 15 exhibit ≥10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC(50) values 23, 62, and 73 nM, respectively). δ-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N(4)-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.