Abstract

Two ionic liquids (ILs), (E)-4-(2-(4-fluorobenzylidene)hydrazinecarbonyl)-1-propylpyridin-1-ium iodide (Ipyr-C3H7) and (E)-4-(2-(4-fluorobenzylidene) hydrazinecarbonyl)-1-pentylpyridin-1-ium iodide (Ipyr-C5H11) were evaluated as novel inhibitors for mild steel corrosion in 1 M HCl using electrochemical techniques and quantum chemical calculation. The results revealed that Ipyr-C3H7 and Ipyr-C5H11 acted as mixed-type inhibitors with anodic predominance and achievd an inhibition efficiency of around 88%. The adsorption of the ILs on the metal surface followed the Langmuir kinetic-thermodynamic isotherm. The theoretical approach was performed using DFT calculations at B3LYP, 6–311++G(d,p) to correlate the experimental results. Most descriptors showed a good correlation with the inhibition performance achieved experimentally. Molecular dynamics simulations show that the selected molecules adsorb parallel to the substrate surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.