Abstract

Pyramid-like spikes in a single crystal superalloy were investigated upon irradiation with picosecond (ps) laser pulses (200 ps, 800 nm, 1 kHz) under different laser fluences and pulse numbers. Both sides and grooves of pyramid-like spikes were covered with ripples, which had a period of ∼760 nm. The pyramid-like spike separation increased obviously with increasing laser fluence. Microstructural investigations indicate that the pyramid-like spikes were initiated with subsequent pulses from a smooth surface with corrugations and ripples. The coexistence of capillary waves for spikes and capillary waves for ripples in the melted material can be used to explain the formation of the pyramid-like spikes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.