Abstract
This paper reports the synthesis, isomer separation, and X-ray characterization of the compounds (SRu,SC)-/(RRu,SC)-[CpRu(Chairphos)Cl], Chairphos = (S)-1,3-bis(diphenylphosphanyl)butane, and cis-/trans-[CpRu(Dppm-Me)Cl], Dppm-Me = 1,1-bis(diphenylphosphanyl)ethane. The Cl/I exchange reactions proceeded with predominant retention of the metal configuration, accompanied by some inversion, except for trans-[CpRu(Dppm-Me)Cl], which was stereospecifically converted to trans-[CpRu(Dppm-Me)I]. Temperature-dependent kinetic measurements afforded rates and activation parameters of the Cl/I exchange and epimerization reactions that follow basilica-type energy profiles. Dissociation of Cl− from [CpRu(Chairphos)Cl] and [CpRu(Dppm-Me)Cl] gives pyramidal intermediates [CpRu(Chairphos)]+ and [CpRu(Dppm-Me)]+, which maintain the metal configuration. The 16-electron intermediates can react with excess I− to form the iodo complexes with retention of the metal configuration, or they can change the metal configuration by pyramidal inversion, leading to formation of iodo complexes with inverted metal configuration. The kinetic measurements show that the pyramidal inversion via planar transition states depends on the P−Ru−P′ angles. It increases with decreasing chelate ring size, because small P−Ru−P′ angles resist planarization in the transition, which requires larger P−Ru−P′ angles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.