Abstract

Histone gene expression is tightly controlled during cell cycle. The epigenetic mechanisms underlying this regulation remain to be fully elucidated. Pygopus 2 (Pygo2) is a context-dependent co-activator of Wnt/beta-catenin signaling and a chromatin effector that participates in histone modification. In this study, we show that Pygo2 is required for the optimal expression of multiple classes of histone genes in cultured human mammary epithelial cells. Using chromatin immunoprecipitation assay, we demonstrate that Pygo2 directly occupies the promoters of multiple histone genes and enhances the acetylation of lysine 56 in histone H3 (H3K56Ac), previously shown to facilitate yeast histone gene transcription, at these promoters. Moreover, we report reduced global levels of H3K56Ac in Pygo2-depleted cells that occur in a cell cycle-independent manner. Together, our data uncover a novel regulator of mammalian histone gene expression that may act in part via modifying H3K56Ac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.