Abstract

Abstract Climatic variability of the pycnocline in the eastern tropical and North Pacific has oceanographic and ecological implications. Gridded monthly profiles of temperature and salinity from the Simple Ocean Data Assimilation (SODA) reanalysis, 1958–2008, were used to derive estimates of four variables related to the density structure of the upper-ocean water column: surface temperature, pycnocline depth, mixed layer depth, and stratification (potential energy anomaly). The pycnocline is primarily a thermal gradient in this region, except in subarctic waters at the northern extreme of the study area, where salinity becomes more important than temperature in determining stratification. Spatial patterns of mean and standard deviation of the four pycnocline variables are presented. Partitioning of variance between seasonal and interannual scales shows the predominance of interannual variability in the tropics and seasonal variability at higher latitudes. Low-frequency variations (trends) in the pycnocline variables were derived by state-space analysis of time series averaged in 5° squares. Regionally coherent trends were either monotonic over 50 years or had decadal-scale changes in sign (±5–10-m depth, ±5%–10% of stratification). For example, in the eastern equatorial Pacific, the pycnocline shoaled by 10 m and weakened by 5% over the 50 years, while in the California Current the pycnocline deepened by ~5 m but showed little net change in stratification, which weakened by 5% to the mid-1970s, strengthened by 8% to the mid-1990s, and then weakened by 4% to 2008. These observed changes in the pycnocline, and future changes resulting from global climate change, may have important biological and ecosystem effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call