Abstract
Due to the complexity of fault states and the non-linear relationship between input and output responses, fault diagnosis in complex power circuit systems faces significant challenges. This study proposes a novel hybrid method, PW-FBPNN, which integrates principal component analysis (PCA), wavelet packet transform (WPT), and fuzzy back propagation neural network (FBPNN) to enhance fault diagnosis. The effectiveness of this method was demonstrated through experiments on the voltage divider basic operational amplifier and the second-order filter circuit of the four operational amplifiers. PW-FBPNN achieved 100% accuracy in diagnosing most types of faults, with a minimum accuracy of 91.67% for challenging faults. This method was significantly superior to existing methods such as FCM-HMM-SVM and KICA-DNN in terms of accuracy and computational efficiency and could complete the diagnosis in just 0.01 seconds. These results indicate that PW-FBPNN has the potential to improve fault diagnosis in power circuit systems, providing a promising solution for enhancing system reliability and maintenance efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.