Abstract

Stressful stimuli can activate the hypothalamic-pituitary-adrenal (HPA) axis. Clinically, it has been widely reported that stressful events are often accompanied by teeth clenching and bruxism, while mastication (chewing) can promote coping with stress. Trigeminal motoneurons in the trigeminal motor nucleus supplying the chewing muscles receive direct inputs from interneurons within the peritrigeminal premotor area (Peri5). Previous studies found that the paraventricular hypothalamic nucleus (PVH) participates in trigeminal activities during stressful events. However, the neural pathway by which the stress-induced oral movements alleviate stress is largely unknown. We hypothesized that paraventricular-trigeminal circuits might be associated with the stress-induced chewing movements and anxiety levels. First, we observed the stress-coping effect of wood gnawing on stress-induced anxiety, with less anxiety-like behaviors seen in the open field test and elevated plus maze, as well as decreased corticosterone and blood glucose levels, in response to stress in mice. We then found that excitotoxic lesions of PVH reduced the effect of gnawing on stress, reflected in more anxiety-like behaviors; this emphasizes the importance of the PVH in stress responses. Anterograde, retrograde, transsynaptic, and nontranssynaptic tracing through central and peripheral injections confirmed monosynaptic projections from PVH to Peri5. We discovered that PVH receives proprioceptive sensory inputs from the jaw muscle and periodontal ligaments, as well as provides motor outputs via the mesencephalic trigeminal nucleus (Me5) and Peri5. Next, pathway-specific functional manipulation by chemogenetic inhibition was conducted to further explore the role of PVH-Peri5 monosynaptic projections. Remarkably, PVH-Peri5 inhibition decreased gnawing but did not necessarily reduce stress-induced anxiety. Moreover, neuropeptide B (NPB) was expressed in Peri5-projecting PVH neurons, indicating that NPB signaling may mediate the effects of PVH-Peri5. In conclusion, our data revealed a PVH-Peri5 circuit that plays a role in the stress response via its associations with oromotor movements and relative anxiety-like behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call