Abstract

As an antibacterial agent with pleasant fragrance, citral (CIT) indicates hydrophobic character, and therefore has low water solubility. In this study, Pickering emulsions were formed and polyvinyl alcohol (PVA)/whey protein hydrophilic nanofibers were coated on PP melt blown non-woven surfaces by electrospinning method. In this context, hydrophobic citral essential oil is stabilized with β-cyclodextrin (β-CD) in the electrospinning process. PVA and whey protein polymer blend were used as nanofiber matrixes. The morphological, physical, and thermal properties of the β-CD/citral complexes were investigated in PVA/whey protein nanofiber-coated PP non-wovens at various β-CD levels (1:2, 1:4 and 1:6). Furthermore, zone inhibition procedure was performed to evaluate antibacterial activity of the samples against Gram (+) (Staphylococcus aureus ATCC® 25923) and Gram (-) (Escherichia coli ATCC® 25922, and Pseudomonas aeruginosa ATCC® 27853) bacteria. The morphology of fibers showed that all obtained nanofiber-coated PP surfaces were in the range with 216 - 330 nm average fiber diameter. Fourier Transform Infrared (FT-IR) and thermal gravimetric analysis (TGA) thermograms revealed that citral were successfully integrated into the bio-based nanofibers. As the amount of citral increased (i.e., the β-CD/citral increased), the thermal resistance of bio-based nanofiber coated PP surfaces increased. Antibacterial activity indicated the citral-loaded nanofiber-coated PP surfaces were most effective against Escherichia coli, while none of the samples have antibacterial activity against Pseudomonas aeruginosa. Overall, the results displayed that the fabricated PVA/whey protein nanofiber-coated PP samples integrated with Pickering emulsion of citral stabilized have promising wound dressing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call