Abstract

In this study, the output power of a PV panel under different operating conditions was estimated with the help of an extreme learning algorithm (ELM). For this purpose, a PV panel with a power of 180W was installed, and the open circuit voltage, short circuit current, panel temperature, and solar radiation of this panel were measured and recorded at regular intervals. A total of 75 measurement data were obtained. The maximum power of the panel was calculated using the open circuit voltage and short circuit current information. While panel temperature and solar radiation were given as inputs to the regression model of the PV panel based on ELM, the output of the regression model was taken as the maximum power of the PV panel. To improve the prediction accuracy of ELM, the number of input neurons of ELM and the type of activation function used in the hidden layer were determined by trial and error method. The generated PV data set is separated into training and testing sets. The performance of the method was examined with the 5-fold cross-validation method. For this purpose, the dataset was divided into 5 equal parts. One of these parts was used for testing the ELM and the remaining four sets were used for training the ELM, and this was done by changing the test set each time. Thus, the network was trained and tested 5 times with different sets, and the test result of the network was obtained by averaging the sum of the performances of all test functions. Regression results obtained from ELM are given for different numbers of hidden layer neurons and different types of activation functions in the hidden layer. The best prediction result of ELM was obtained for the case where the hidden layer activation function was tangent sigmoid and the number of hidden layer neurons was 20. From the results obtained, it has been seen that ELM predicts the output power of the PV panel with very high accuracy. It is concluded that ELM is a useful tool for estimating the PV panel output power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call