Abstract

Plant microtubule-associated proteins (MAPs) are important in modulating the function of the microtubule cytoskeleton. Various plant MAPs have already been described. However, because of the complexity of the plant microtubule cytoskeleton and its responses to developmental and environmental stimuli, there are undoubtedly many more MAPs to be discovered. We have used a literature search and the BLAST protein comparison program to identify which model MAPs from other taxa have close homologues in Arabidopsis thaliana. The search revealed Arabidopsis homologues of 14 model MAPs, with E values (numbers of proteins that will match the model protein merely by chance) of <1 x 10(-10) and homologous domains spanning 98-599 amino acid residues, representing 57.1-97.0% of the model MAP sequence, as well as 22.5-72.8% amino acid identities and 76.3-96.2% conservation of secondary structure in the homologous domain. All of the Arabidopsis homologues have either a full cDNA clone or an expressed sequence tag in the GenBank database and therefore are expressed. The proteins are likely to regulate a variety of functions, including tubulin folding, microtubule nucleation and polymerisation dynamics, microtubule-dependent cell cycle control, organisation of microtubule arrays, interaction of microtubules with plasma-membrane-associated protein complexes, and interactions with various other proteins. The exact functions of these putative MAPs in the plant cell remain to be elucidated empirically. The identification of these putative MAPs opens new avenues for the investigation of the complexities of the plant microtubule cytoskeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.