Abstract

Microtubule-associated proteins (MAPs) have been hypothesized to regulate microtubule dynamics and/or functions. To test hypotheses concerning E-MAP-115 (ensconsin) function, we prepared stable cell lines expressing conjugates in which the full-length MAP (Ensc) or its microtubule-binding domain (EMTB) was conjugated to one or more green fluorescent protein (GFP) molecules. Because both distribution and microtubule-binding properties of GFP-Ensc, GFP-EMTB, and 2x, 3x, or 4xGFP-EMTB chimeras all appeared to be identical to those of endogenous E-MAP-115 (ensconsin), we used the 2xGFP-EMTB molecule as a reporter for the behavior and microtubule-binding function of endogenous MAP. Dual wavelength time-lapse fluorescence imaging of 2xGFP-EMTB in cells microinjected with labeled tubulin revealed that this GFP-MAP chimera associated with the lattice of all microtubules immediately upon polymerization and dissociated concomitant with depolymerization, suggesting that dynamics of MAP:microtubule interactions were at least as rapid as tubulin:microtubule dynamics in the polymerization reaction. Presence of both GFP-EMTB chimeras and endogenous E-MAP-115 (ensconsin) along apparently all cellular microtubules at all cell cycle stages suggested that the MAP might function in modulating stability or dynamics of microtubules, a capability shown previously in transiently transfected cells. Although cells with extremely high expression levels of GFP-EMTB chimera exhibited stabilized microtubules, cells expressing four to ten times the physiological level of endogenous MAP exhibited microtubule dynamics indistinguishable from those of untransfected cells. This result shows that E-MAP-115 (ensconsin) is unlikely to function as a microtubule stabilizer in vivo. Instead, this MAP most likely serves to modulate microtubule functions or interactions with other cytoskeletal elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.