Abstract
Group I introns are mobile genetic elements that interrupt genes encoding proteins and RNAs. In the rRNA operon, introns can insert in the small subunit (SSU) and large subunit (LSU) of a wide variety of protists and various prokaryotes, but they were never found in the ITS region. In this study, unusually long ITS regions of fungi and closely related unicellular organisms (Polychytrium aggregatum, Mitosporidium daphniae, Amoeboaphelidium occidentale and Nuclearia simplex) were analysed. While the insertion of repeats is responsible for long ITS in other eukaryotes, the increased size of the sequences analysed herein seems rather due to the presence of introns in ITS-1 or ITS-2. The identified insertions can be folded in secondary structures according to group I intron models, and they cluster within introns in conserved core-based phylogeny. In addition, for Mitosporidium, Amoeboaphelidium and Nuclearia, more conventional ITS-2 structures can be deduced once spacer introns are removed. Sequences of five shark species were also analysed for their structure and included in phylogeny because of unpublished work reporting introns in their ITS, obtaining congruent results. Overall, the data presented herein indicate that spacer regions may contain introns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.