Abstract
As the global climate crisis continues, predictions concerning how wild populations will respond to changing climate conditions are informed by an understanding of how populations have responded and/or adapted to climate variables in the past. Changes in the local biotic and abiotic environment can drive differences in phenology, physiology, morphology and demography between populations leading to local adaptation, yet the molecular basis of adaptive evolution in wild non-model organisms is poorly understood. We leverage comparisons between two lineages of Calochortus venustus occurring along parallel transects that allow us to identify loci under selection and measure clinal variation in allele frequencies as evidence of population-specific responses to selection along climatic gradients. We identify targets of selection by distinguishing loci that are outliers to population structure and by using genotype-environment associations across transects to detect loci under selection from each of nine climatic variables. Despite gene flow between individuals of different floral phenotypes and between populations, we find evidence of ecological specialization at the molecular level, including genes associated with key plant functions linked to plant adaptation to California's Mediterranean climate. Single-nucleotide polymorphisms (SNPs) present in both transects show similar trends in allelic similarity across latitudes indicating parallel adaptation to northern climates. Comparisons between eastern and western populations across latitudes indicate divergent genetic evolution between transects, suggesting local adaptation to either coastal or inland habitats. Our study is among the first to show repeated allelic variation across climatic clines in a non-model organism.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have