Abstract

SYNOPSIS In this paper the results of a CFD investigation for a push-pull local ventilation system are presented. The velocity field and the capture efficiency prediction are investigated for different system arrangements. The analysis is carried out for systems respectively with and without fluid-dynamic obstacle in the working plane and for dust pollutants with particle diameters ranging from 1.0 to 100 μm and emission velocities between 1.0 and 7.0 m/s. The analysis, carried out using the commercial code FLUENT, shows that the system performances are dependent on operating conditions and are influenced by the presence of the above-mentioned obstacle on the working plane. In the case of working plane emission without obstacle the system capture efficiency is in general very low never exceeding 25%. Higher efficiencies are instead achieved for particle emission from a vessel placed in the system's working plane centre. In this case even unitary peak efficiencies are reached for particular operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.