Abstract

The Minimal Constraint Satisfaction Problem, or Minimal CSP for short, arises in a number of real-world applications, most notably in constraint-based product configuration. It is composed of the set of CSP problems where every allowed tuple can be extended to a solution. Despite the very restrictive structure, computing a solution to a Minimal CSP instance is NP-hard in the general case. In this paper, we look at three independent ways to add further restrictions to the problem. First, we bound the size of the domains. Second, we define the arity as a function on the number of variables. Finally we study the complexity of computing a solution to a Minimal CSP instance when not just every allowed tuple, but every partial solution smaller than a given size, can be extended to a solution. In all three cases, we show that finding a solution remains NP-hard. All these results reveal that the hardness of minimality is very robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.