Abstract
The transformation of münchnones (mesoionic rings featuring the 1,3-oxazolium-5-olate core) into their sulfur counterparts (1,3-thiazolium-5-thiolates) by reaction with CS(2), pioneered by Huisgen and his group in the early 1970s, has been re-investigated in detail by means of both experimental and theoretical methods. The synthetic strategy can be tuned to incorporate donor and acceptor groups in appropriate positions. Calculations of molecular hyperpolarizabilities together with orbital topologies evidence that these sulfur-containing heterocycles exhibit nonlinear optical responses, thereby pointing to potential applications of mesoionic structures in the NLO field. From a mechanistic viewpoint, modeling of the whole systems at the B3LYP/6-31G(d) level reveals that concerted and stepwise pathways are operative depending on the substitution pattern of the parent münchnone, which also account for the experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have