Abstract

Cytochrome b561 from bovine adrenal medulla chromaffin granules has been purified by fast protein liquid chromatography chromatofocusing. The purified cytochrome was reconstituted into ascorbate-loaded phosphatidylcholine vesicles. With this reconstituted system transmembrane electron transfer for extravesicular soluble dopamine beta-hydroxylase activity was demonstrated. In accordance with the model proposed by Njus et al. (Njus, D., Knoth, J., Cook, C., and Kelley, P. M. (1983) J. Biol. Chem. 258, 27-30), catalytic amounts of a redox mediator were necessary to achieve electron transfer between cytochrome and soluble dopamine beta-hydroxylase. Our observations also showed that when membranous dopamine beta-hydroxylase was reconstituted on cytochrome containing vesicles, electron transfer occurred only in the presence of a redox mediator. Since cytochrome b561 has been found in secretory vesicles associated with peptidyl glycine alpha-amidating monooxygenase, electron transfer to this enzyme was also examined. Analogous to the results obtained for dopamine beta-hydroxylase, transmembrane electron transfer to peptidyl glycine alpha-amidating monooxygenase appears to require a redox mediator between cytochrome and this monooxygenase. These observations indicate that purified cytochrome b561 is capable of providing a transmembrane supply of electrons for both monooxygenases. Since no direct protein to protein electron transfer occurs, the results support the hypothesis that the ascorbate/semidehydroascorbate redox pair serves as a mediator for these enzymes in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.