Abstract

Effluents from wastewater treatment plants (WWTPs) is the main source of pollution in rivers in developing countries. In this case study, three bypass ecological treatment systems along urban rivers achieved high removal efficiencies for chemical oxygen demand (COD; 55.7–64.0%), ammonium N (NH4+-N; 63.1–89.4%) and total phosphorous (TP; 27.6–76.7%). 16 S rRNA gene sequencing analysis confirmed that Proteobacteria was the main bacterial phylum (44.4%) in the ecological treatment system, and members were enriched significantly in the non-aeration area (59.3%). The relative abundance of Nitrospirae was highest in the inflow area (25.0%), but restrained in the non-aeration area (5.7%). 18 S rRNA gene annotation results indicated that phylum Rotifer was gradually inhibited with the direction of water flow and diffusion, while phylum Rhodophyta displayed the opposite trend. After implementation of bypass ecological treatment systems, receiving rivers were improved significantly from Grade Ⅴ to Ⅳ, and the biodiversity of zooplankton, zoobenthos and fish communities was greatly improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.