Abstract

The crude glycerol produced as a byproduct of transesterification synthesis has very few applications because it comprises of significant amounts of methanol, catalyst, and soap. On the other hand, transesterifications of highly acidic oil in the presence of an alkaline catalyst are problematic due to the presence of high amounts of free fatty acids. In this study, the free fatty acid level of high acid oil, which was initially determined to be 19.25%, was decreased to permit the direct production of biodiesel via glycerolysis with pure glycerol, making direct transesterification feasible. Through a process of purification, crude glycerol was refined to 92.5% purity. It was revealed that the physiochemical parameters of density, moisture content, ash content, matter organic non-glycerol content, pH, and Na/K concentrations of generated purified glycerol are equal to those of commercially available glycerol. In contrast, glycerolysis treatment successfully decreased the free fatty acid level to less than 2% under optimal conditions, which were determined to be 200 °C, a glycerol-to-oil molar ratio of 4:1, and a KOH catalyst concentration of 1.6 wt.% at 350 rpm. The inclusion of hexane as a co-solvent accelerated the glycerolysis process, and the weight ratio of oil-to-hexane was 8:1. Moreover, it was viable to use waste methanol for biodiesel synthesis and purified crude glycerol as a raw material in a variety of industries, including biodiesel production. In addition, compared to acid esterification, the FFA concentration of oil with a high acid value fell significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call