Abstract

The gene encoding human epidermal growth factor (hEGF) was expressed as a fusion protein with the Saccharomyces cerevisiae-derived prepro alpha-factor leader in the methylotrophic yeast Hansenula polymorpha. The recombinant hEGF(1-53), when secreted by H. polymorpha, rapidly cleaved to hEGF(1-52) by carboxy-terminal proteolysis, resulting in the accumulation of C-terminal-truncated hEGF(1-52) in the culture medium. To solve this problem, we constructed a H. polymorpha mutant in which the KEX1 gene coding for carboxypeptidase ysc(alpha) was disrupted. The extent of C-terminal proteolysis of hEGF was significantly reduced when this kex1 disruptant was used as a host strain. After 24 h of shake-flask culture, most of the hEGF secreted by the kex1 disruptant remained intact, whereas more than 90% of the hEGF secreted by the wild-type was C-terminally cleaved. The recombinant hEGF was purified to >98% purity by two sequential steps of preparative scale anion exchange chromatography and reverse-phase HPLC. The authenticity of purified hEGF was confirmed by HPLC, N-terminal amino acid sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.