Abstract

A positive cis-acting element, the B element, located between -83 and -61 in the mouse alpha 1(III) collagen promoter, binds a factor present in nuclear extracts of NIH 3T3 fibroblasts and HeLa cells. We have purified this factor using ion exchange chromatography, sequence-specific DNA affinity chromatography, and sodium dodecyl sulfate-polyacrylamide gel fractionation. The DNA sequence used for the affinity chromatography was a single-base substitution in the B element that increased the stability of the B element-protein complex by 50%. Purification of the B element-binding factor (BBF) by DNA affinity chromatography resulted in the apparent loss of most or all of the DNA-binding activity of this factor. The DNA-binding activity could, however, be reconstituted by combining two chromatographic fractions: the high-salt eluate and the column flow-through. When the partially purified high-salt eluate was size-fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with subsequent renaturation of gel fractions from guanidine HCl, the purified BBF (apparent molecular weight of about 95,000) bound to the B element with high affinity. These results suggest that during DNA affinity purification of BBF a factor that inhibits BBF DNA binding was co-eluted with BBF. This inhibition of BBF DNA binding was reversed by the addition of the DNA affinity column flow-through. The binding of BBF to the B element of the mouse alpha 1(III) collagen promoter is therefore an apparently complex process involving interactions between BBF and other protein factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.