Abstract

The Escherichia coli UmuD' and UmuC proteins play essential roles in SOS-induced mutagenesis. Previous studies investigating the molecular mechanisms of mutagenesis have been hindered by the lack of availability of a soluble UmuC protein. We report the extensive purification of a soluble UmuD'C complex and its interactions with DNA. The molecular mass of the complex is estimated to be 70 kDa, suggesting that the complex consists of one UmuC (46 kDa) and two UmuD' (12 kDa) molecules. In contrast to its inability to bind to double-stranded DNA, UmuD'C binds cooperatively to single-stranded DNA as measured by agarose gel electrophoresis and confirmed by steady-state fluorescence depolarization. A Hill coefficient, n = 3, characterizes the binding of UmuD'C to M13 DNA and to a 600 nucleotide DNA oligomer, suggesting that at least three protein complexes may interact cooperatively when binding to DNA. The apparent equilibrium binding constant of UmuD'C to single-stranded DNA is approximately 300 nM. Binding of the complex to a short, 80 nucleotide, DNA oligonucleotide was detectable by fluorescence depolarization, but it did not appear to be cooperative. Binding of UmuD'C to single-stranded M13 DNA causes an acceleration of the protein-DNA complex, suggesting that the longer DNA may undergo compaction. The UmuD'C complex associates with RecA-coated DNA, and the UmuD'C complex remains bound to DNA in the presence of RecA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.