Abstract

Nicotinic acetylcholine receptors are members of the Cys-loop superfamily of pentameric ligand-gated ion channels. The electric organ of the Torpedo ray is extraordinarily rich in an acetylcholine receptor that is homologous to the human nicotinic receptor found at the neuromuscular junction. Due to this abundant natural source in the fish and the relatively accessible preparation of the neuromuscular junction (compared to a central synapse), this muscle-type receptor and specifically the fish receptors have long been used as the prototype for study of nicotinic receptors. However, an absence of structural detail at high resolution has limited the chemical interpretation of this archetypal nicotinic receptor. One of the main concerns in preparing receptor for high resolution structural analysis was its documented sensitivity to particular detergents and requirements for specific lipids in order to maintain function after reconstitution in a membrane. Here, we present methods for purifying native nicotinic receptor from Torpedo electric tissue that maintains functionality after reconstitution and that is amenable to high resolution structural analysis. The specific developments we describe include detergent exchange during purification, inclusion of specific lipids during purification and for nanodisc reconstitution, and synthesis of a new affinity reagent for rapid isolation of receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.