Abstract
The existing technologies for the extraction of polysaccharides and lignin from lignocellulosic materials from an ecological and economic point of view are imperfect. The solution of this actual problem at present day is possible by heat treatment of lignocellulosic materials at the atmospheric pressure and relatively low temperature in the environment of ionic liquids. The use of ionic liquids for the fractionation of lignocellulosic raw materials isn't found industrial application because of their relatively high cost and sensitivity to contamination, despite the unique set of physico-chemical properties for dissolving cellulose. The solution of the problem is possible by reusing ionic liquid in the technological process without losing their effectiveness, which requires purification from impurities. The purpose of thе work was the comparative research of the efficiency of purification of 1-butyl-3-methylimidazolium chloride by adsorption on activated carbon, liquid extraction by organic solvents (benzene, dioxane, tetrahydrofuran) and supercritical CO2 extraction. It has been established that the methods of liquid extraction, supercritical CO2 extraction and adsorption on activated carbon can be used to purify 1-butyl-3-methylimidazolium chloride from extractives of wheat straw. For the purpose of comparison of efficiency of purification with above-mentioned methods the GC-MS, IR- and 1H NMR spectroscopy were used. It was revealed that extraction of impurities by organic solvents, such as benzene, dioxane and tetrahydrofuran, allows to reduce significantly their content in ionic liquid while supercritical CO2-extraction and adsorption on activated carbon almost completely remove impurities. Considering the substantial losses of the ionic liquid when using adsorption to purify 1-butyl-3-methylimidazolium chloride from the extractives of wheat straw, a supercritical CO2 extraction method can be recommended for use.Forcitation:Evstaf’ev S.N., Hoang C.Q. Purification of 1-butyl-3-methylimidazolium chloride after dissolution of wheat straw. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 3. P. 83-87
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.