Abstract

A new manganese-containing acid phosphatase has been isolated and crystallized from sweet potato tubers. The pure enzyme contains one atom of manganese per Mr = 110,000 polypeptide and shows phosphatase activity toward various phosphate substrates. The pH optimum of the enzyme was 5.8 and the enzyme activity was inhibited by Cu2+, Zn2+, Hg2+, AsO43-, and MoO42-. This stable metalloenzyme is red-violet in color with an intense absorption band at 515 nm (epsilon - 2460). Our electronic, circular dichroism, and electron spin resonance findings strongly indicate that the Mn-valence state of the native enzyme is trivalent. When the Mn-enzyme is excited by the 5145 A line of Ar+ laser, prominent Raman lines at 1230, 1298, 1508, and 1620 cm-1 were detected. This Raman spectrum can probably be interpreted in terms of internal vibration of a coordinated tyrosine phenolate anion. The tryptophan-modified enzyme showed a positive Raman band at 370 cm-1, which is preferentially assigned to a Mn(III)-S streching mode. The modification of the Mn-enzyme by N-bromosuccinimide led to a large decrease in the fluorescence intensity of 335 nm which was dominated by its tryptophan residues within a considerable hydrophobic environment. The acid phosphatase activity was significantly decreased by the tryptophan modification. With respect to the active site donor sets, the Mn(III)-containing acid phosphatase is distinctly different from the Zn(II)-containing alkaline phosphatase. Of interest is also the appreciable similarity of some enzymatic and spectroscopic properties between the present enzyme and uteroferrin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.