Abstract

We propose to observe many-body localization in cold atomic gases by realizing a Bose-Hubbard chain with binary disorder and studying its nonequilibrium dynamics. In particular, we show that measuring the difference in occupation between even and odd sites, starting from a prepared density-wave state, provides clear signatures of localization. Furthermore, we confirm as hallmarks of the many-body localized phase a logarithmic increase of the entanglement entropy in time and Poissonian level statistics. Our numerical density-matrix renormalization group calculations for infinite system size are based on a purification approach; this allows us to perform the disorder average exactly, thus producing data without any statistical noise and with maximal simulation times of up to a factor 10 longer than in the clean case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call