Abstract

We have studied collective recoil lasing by a cold atomic gas, scattering photons from an incident laser into many radiation modes in free space. The model consists of a system of classical equations for the atomic motion of N atoms, where the radiation field has been adiabatically eliminated. We performed numerical simulations using a molecular dynamics code, Pretty Efficient Parallel Coulomb Solver or PEPC, to track the trajectories of the atoms. These simulations show the formation of an atomic density grating and collective enhancement of scattered light, both of which are sensitive to the shape and orientation of the atomic cloud. In the case of an initially circular cloud, the dynamical evolution of the cloud shape plays an important role in the development of the density grating and collective scattering. The ability to use efficient molecular dynamics codes will be a useful tool for the study of the multimode interaction between light and cold gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.