Abstract

Human salivary α-amylase (HSAMY) is a major component of salivary secretions, possessing multiple important biological functions. Here we have established three methods to purify HSAMY in human saliva for comprehensive characterization of HSAMY by high-resolution top-down mass spectrometry (MS). Among the three purification methods, the affinity method based on the enzyme-substrate specific interaction between amylase and glycogen is preferred, providing the highest purity HSAMY with high reproducibility. Subsequently, we employed Fourier transform ion cyclotron resonance MS to analyze the purified HSAMY. The predominant form of α-amylase purified from saliva of various races and genders is nonglycosylated with the same molecular weight of 55,881.2, which is 1885.8 lower than the calculated value based on the DNA-predicted sequence. High-resolution MS revealed the truncation of the first 15 N-terminal amino acids (-1858.96) and the subsequent formation of pyroglutamic acid at the new N-terminus Gln (-17.03). More importantly, five disulfide bonds in HSAMY were identified (-10.08) and effectively localized by tandem MS in conjunction with complete and partial reduction by tris (2-carboxyethyl) phosphine. Overall, this study demonstrates that top-down MS combined with affinity purification and partial reduction is a powerful method for rapid purification and complete characterization of large proteins with complex and overlapping disulfide bond patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call