Abstract

Two types of the NADH-quinone reductase were isolated from Thermus thermophilus HB-8 membranes, by use of the nonionic detergent, dodecyl beta-maltoside, and NAD-agarose affinity, DEAE-cellulose, hydroxyapatite, and Superose 6 column chromatography. One of these (NADH dehydrogenase 1) is a complex composed of 10 unlike polypeptides, and the other (NADH dehydrogenase 2) exhibits a single band (Mr 53,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 1 was about 14 times higher than that of the dodecyl beta-maltoside extract and partially rotenone sensitive. The NADH-ubiquinone-1 reductase activity of the isolated NADH dehydrogenase 2 was about 30-fold as high as that of the dodecyl beta-maltoside extract and rotenone insensitive. The purified NADH dehydrogenase 1 contained noncovalently bound FMN, non-heme iron, and acid-labile sulfide. The ratio of FMN to non-heme iron to acid-labile sulfide was 1:11-12:7-9. The high content of iron and labile sulfide is suggestive of the presence of several iron-sulfur clusters. The purified NADH dehydrogenase 2 contained noncovalently bound FAD and no non-heme iron or acid-labile sulfide. The activities of both NADH dehydrogenases were stable at temperatures of greater than or equal to 80 degrees C. The occurrence of two distinct types of NADH dehydrogenase as a common feature in the membranes of various aerobic bacteria is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.