Abstract

Two hepatic microsomal cytochromes P-450, P-450F-1 and P-450F-2, were purified to electrophoretic homogeneity from untreated adult female rats by high-performance liquid chromatography (HPLC) with anion-exchange, cation-exchange, and hydroxyapatite columns. Cytochromes P-450F-1 and P-450F-2 were not adsorbed with the anion-exchange column, but were retained on a cation-exchange column and were separated poorly. These forms separated on hydroxyapatite HPLC. The molecular weights of cytochromes P-450F-1 and P-450F-2 were 50000 and 49000, respectively. The absolute spectrum of the oxidized forms indicated that they had the low-spin state of heme, and the CO-reduced spectral maxima of cytochromes P-450F-1 and P-450F-2 were at 450 and 448 nm, respectively. Both forms catalyzed the N-demethylation of benzphetamine and had low catalytic activity for 7-ethoxycoumarin. Cytochrome P-450F-1 had low 2 α-hydroxylation activity toward testosterone. Cytochrome P-450F-2 had low 15 α-hydroxylation activity. On the basis of these results and those of NH 2-terminal sequence analysis, cytochrome P-450F-2 seemed to be the typical female-specific cytochrome P-450. The NH 2-terminal sequence of cytochrome P-450F-1 was identical to that of cytochrome P-450PB-2 purified from hepatic microsomes of male rats treated with phenobarbital. Cytochromes P-450F-1 and P-450F-2 had identical chromatographic properties, minimum molecular weight, spectral properties, and peptide maps. Furthermore, the antibody to phenobarbital-inducible cytochrome P-450PB-2 gave a single immunoprecipitin band with cytochrome P-450F-1 by Ouchterlony double-diffusion analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call