Abstract

5'-Methylthioadenosine phosphorylase from Sulfolobus solfataricus, a thermoacidophilic archaeon optimally growing at 87 degrees C, has been purified to homogeneity. Reducing agents are not required for catalytic activity. The enzyme has a molecular mass of 160 kDa and is composed of six apparently identical subunits of 27 kDa. The NH2-terminal sequence shows high homology (50%) with the NH2-terminal sequence of Escherichia coli purine nucleoside phosphorylase. Physicochemical and kinetic features are reported. 5'-Methylthioadenosine phosphorylase is highly thermophilic, with an optimum temperature of 120 degrees C. The enzyme is characterized by extreme thermal stability, remaining completely active after 2 h at 100 degrees C and showing half-inactivation times of 15 and 5 min when incubated at 130 and 140 degrees C, respectively. An apparent melting temperature of 132 degrees C has been calculated. After 24 h of incubation at room temperature no loss of activity is detected in the presence of 9 M urea, 4 M guanidine hydrochloride, 0.075% SDS, 50% methanol, 50% ethanol, 50% dimethylformamide, 1 M NaCl, and 1% Triton X-100. Data are also reported on the enzyme's resistance to proteolysis and on the effect of salts, detergents, solvents, and reducing agents on enzyme thermostability. Labeling experiments with iodo[2-14C]acetic acid resulted in the incorporation of approximately 12 mol of labeled iodoacetate/mol of protein, indicating the presence of six disulfide bonds that, on the basis of SDS-polyacrylamide gel electrophoresis, are probably positioned intersubunits, resulting in the organization of the enzyme into two trimers. 5'-Methylthioadenosine (MTA) phosphorylase is endowed with a broad substrate specificity, being able to phosphorolytically cleave inosine, guanosine, and adenosine with a better efficiency than MTA, allowing us to hypothesize that in S. solfataricus the same enzyme is responsible for the catabolism of MTA and of these purine nucleosides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.