Abstract

Laccases of white-rot fungi provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. The aim of this study was production, characterization, and application of laccases from the white-rot fungus Ceriporiopsis subvermispora ATCC 90467 for decolorization of triphenylmethane dyes that could remain persistent in wastewater. Laccase was purified from a C. subvermispora culture by a four-step method resulting high specific activity of 2,571 U g-1 , 88-fold higher than crude laccase. Purified laccase (molecular weight 45 kDa) had the optimum activity at pH 2.0 and the optimum temperature 50 °C using ABTS as chromogenic substrate. Laccases efficiently decolorized triphenylmethane dyes such as Malachite Green (87.8%), Bromocresol Purple (71.6%), and Methyl Violet (68.1%) without redox mediator. However, decolorization percentage of hardly degradable triphenylmethane dyes such as Phenol Red, Bromophenol Blue, and Brilliant Blue R-250 was increased the presence of some low-molecular weight compounds (natural or synthetic redox mediators). Purified laccases were resistant to Mg2+ , Ca2+ , Ba2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ , and Sn2+ (10 mmol L-1 ). These findings suggest that laccases from C. subvermispora are able to decolorize triphenylmethane dyes without the negative influence of metal ions that can be found in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call