Abstract

Pseudomonas fluorescens E118 was isolated from soil as an effective eugenol-degrading organism by a screening using eugenol as enrichment substrate. The first enzyme involved in the degradation of eugenol in this organism, eugenol dehydrogenase, was purified after induction by eugenol, and the purity of the enzyme was shown by SDS-PAGE and gel-permeation HLPC. The enzyme is a heterodimer that consists of a 10-kDa cytochrome c and a 58-kDa subunit. The larger subunit presumably contains flavin, suggesting a flavocytochrome c structure and an electron transfer via flavin and cytochrome c during dehydrogenation. The activity of the purified enzyme depended on the addition of a final electron acceptor such as phenazine methosulfate, 2,6-dichlorophenol-indophenol, cytochrome c, or potassium ferricyanide. The enzyme catalyzed the dehydrogenation of three different 4-hydroxybenzylic structures including the conversion of eugenol to coniferyl alcohol, 4-alkylphenols to 1-(4-hydroxyphenyl)alcohols, and 4-hydroxybenzylalcohols to the corresponding aldehydes. The catalytic and structural similarity between this enzyme and a Penicillium vanillyl-alcohol oxidase and 4-alkylphenol methylhydroxylases from several Pseudomonas species is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.