Abstract
A soil streptomycete designated as Streptomyces sp. A8 produced an extracellular collagen hydrolysing enzyme that appeared to be 'true collagenase' as it degraded native collagen under physiological conditions and cleaved the synthetic hexapeptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-glycyl-L-prolyl-D-a rginine into two tripeptides. The enzyme was purified by diethyl aminoethyl cellulose chromatography and Sephadex G-150 gel filtration. The purified enzyme had an apparent molecular weight of about 75,000 by SDS-polyacrylamide gel electrophoresis. Treatment with lithium chloride did not dissociate it into subunits. A strong inhibition was observed with chelating agents such as alpha-alpha-dipyridyl and 8-hydroxyquinoline. Ethylene diamine tetraacetate completely inhibited the enzyme activity. Among the cations tested only Ca2+ and Mg2+ enhanced the collagenase activity. Heavy metal ions like Pb2+, Ag+, Cu2+ and Zn2+ strongly inhibited the enzyme. The EDTA inhibition could be reversed with Ca2+. Cysteine and reduced glutathione caused significant reduction in enzyme activity. Parachloromercuribenzoate and iodoacetamide had no effect on the collagenase. Amino acid analysis revealed the absence of cysteine and tyrosine. Many of the properties were the same as collagenases of Clostridium histolyticum and Vibrio alginolyticus.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have