Abstract
Tuberculosis (TB) remains to be a global health problem. New drugs are badly needed to drastically reduce treatment time and overcome some of the challenges with tuberculosis treatment, such as multi-drug resistant (MDR) strain infected patients or tuberculosis/HIV co-infected patients. The essentiality of mycobacterial aromatic amino acid biosynthesis pathways and their absence from human host indicate that the member enzymes of these pathways promising drug targets for therapeutic agents against pathogen mycobacteria. Prephenate dehydrogenase (PDH) is a key regulatory enzyme in tyrosine biosynthesis, catalyzing the NAD +-dependent conversion of prephenate to p-hydroxyphenylpyruvate, making it a potential drug target for antibiotics discovery. The recombinant PDH with an N-terminal His-tag (His-rMtPDH) was first purified in Escherichia coli, and using enterokinase rMtPDH was obtained by cleaving the N-terminal fusion partner. The effect of pH, temperature and the cation-Na + on purified enzyme activity was characterized. The N-terminal fusion partner was found to have little effect on the biochemical properties of PDH. We also provide in vitro evidence that Mycobacterium tuberculosis PDH does not possess any chorismate mutase (CM) activity, which suggests that, unlike many other enteric bacteria (where PDH exists as a fusion protein with CM), M. tuberculosis PDH is a monofunctional protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.