Abstract

The 3-ketoacyl-acyl carrier protein (ACP) synthase III from spinach was purified to homogeneity by an eight-step procedure that included an ACP-affinity column. The size of the native enzyme was M(r) = 63,000 based on gel filtration, and its subunit size was M(r) = 40,500 based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that 3-ketoacyl-ACP synthase III may be a homodimer. The purified enzyme was highly specific for acetyl-CoA and malonyl-ACP. The Km for acetyl-CoA was 5 microM when assayed in the presence of 10 microM malonyl-CoA. Acetyl-, butyryl-, and hexanoyl-ACP would not substitute for acetyl-CoA as substrates. The specificity for acetyl-CoA suggested that the physiological function of 3-ketoacyl-ACP synthase is to catalyze the initial condensation reaction in fatty acid biosynthesis. The homogeneous 3-ketoacyl-ACP synthase was capable of catalyzing acetyl-CoA:ACP transacylation but at a rate about 90-fold slower than the condensation reaction with malonyl-ACP. The 3-ketoacyl-ACP synthase was inhibited 100% by 5 mM N-ethylmaleimide or 20 mM sodium arsenite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.