Abstract

Spin-foams are a proposal for defining the dynamics of loop quantum gravity via path integral. In order for a path integral to be at least formally equivalent to the corresponding canonical quantization, at each point in the space of histories it is important that the integrand have not only the correct phase—a topic of recent focus in spin-foams—but also the correct modulus, usually referred to as the measure factor. The correct measure factor descends from the Liouville measure on the reduced phase space, and its calculation is a task of canonical analysis. The covariant formulation of gravity from which spin-foams are derived is the Plebanski–Holst formulation, in which the basic variables are a Lorentz connection and a Lorentz-algebra valued 2-form, called the Plebanski 2-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski 2-form alone. The spin-foam sum is therefore a discretized version of a Plebanski–Holst path integral in which only the Plebanski 2-form appears, and in which the connection degrees of freedom have been integrated out. We call this a purely geometric Plebanski–Holst path integral. In prior work in which one of the authors was involved, the measure factor for the Plebanski–Holst path integral with both connection and 2-form variables was calculated. Before one discretizes this measure and incorporates it into a spin-foam sum, however, one must integrate out the connection in order to obtain the purely geometric version of the path integral. To calculate this purely geometric path integral is the principal task of the present paper, and it is done in two independent ways. Background independence of the resulting path integral is discussed in the final section, and gauge-fixing is discussed in appendix B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.