Abstract

We have developed an efficient chemical exfoliation approach for the high-throughput synthesis of solution-processable, high-quality graphene sheets that are noncovalently functionalized by alkylamine. Purely coherent nonlinear optical response of these graphene sheets has been investigated, using near-infrared, visible, and ultraviolet continous wave and ultrafast laser beams. Spatial self-phase modulation has been unambiguously observed in the solution dispersions. Our results suggest that this coherent light scattering is due to a broadband, ultrafast, and remarkably huge third-order optical nonlinearity χ(3), which is a manifestation of the graphene's cone-shaped large-energy-scale band structure. Our experimental findings endow graphene new potentials in nonlinear optical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.